

WebPay

Form integration manual

Test environment

2

CONTENT

Requirements ... 3

Payment form ... 3

Transactions types.. 4

Authorization .. 4

Purchase .. 4

Capture .. 4

Refund .. 4

Void ... 4

API settings .. 5

Return values .. 5

Callback.. 7

Email notifications .. 7

Variables - names, lengths and formats ... 10

Buyer's profile.. 10

Order details ... 10

Processing data ... 11

Additional info: .. 11

Custom variables .. 12

Calculating digest ... 12

Transaction management through API .. 13

Capture ... 13

Refund ... 16

Void .. 17

Transactions with installments ... 17

3-D Secure .. 17

Demo client (Test client) .. 17

Look & feel ... 17

List of response codes ... 17

3

Requirements

Integration must be done within our test environment first. When this process is finished

and approved by our staff, you may go live and start processing with real money.

To start integrating with WebPay Form service you will need the following:

• test merchant account

• HTTP client library if you need to programmatically manage approved transactions

through API

If you don't have a test merchant account, please contact us at podrska@monri.com and we

will open one for you.

Then you can login into your account at https://ipgtest.monri.com/en/login with login and

password provided.

Payment form

WebPay Form is a simple web service; merchant should collect data consisted of buyer's

profile and order info at his site and submit that data to https://ipgtest.monri.com/v2/form

using HTTP POST method.

IMPORTANT Parametrize https://ipgtest.monri.com URL, in production mode the

subdomain will be different.

After a valid request is made to WebPay service, a payment form is presented to the buyer.

Buyer now fills in the card details and submits the form.

Service issues a request for authorization to acquirer bank and redisplays appropriate

message if authorization is declined.

If authorization is approved, a redirect is made back to a merchant site.

NOTICE Buyer stays at our side if transaction is declined, form is redisplayed with

appropriate message. There is no means to communicate the failure of transaction to

merchant at this point.

https://ipgtest.monri.com/en/login
https://ipgtest.webteh.hr/en/login
https://ipgtest.monri.com/v2/form
https://ipgtest.webteh.hr/v2/form
https://ipgtest.webteh.hr/v2/form
https://ipgtest.webteh.hr/

4

Optionally, email messages are sent to merchant and/or buyer to notify

both sides of successful purchase. This setting is available under merchant

account together with custom email templates for outgoing email message

Transactions types

Authorization

Authorization is preferred transaction type for e-commerce. Merchant must capture these

transactions within 28 days (or this capture period depends on the bank), in order to

transfer the money from buyer's account to his own. This transaction can also be voided if a

buyer cancels the order. Refund can be done after original authorization is captured.

Purchase

Purchase doesn't need to be approved; funds are transferred in next settlement between

issuer and acquirer banks, usually within one business day. These transactions can be

refunded within 180 days.

Capture

Approved authorization must be captured for the funds to be transferred form buyer's card

to merchant account. This action can be done through merchant account interface or

programmatically through an API call. A lesser amount than an original authorization

amount can be captured as well, ie. a merchant can make partial delivery of goods and/or

services. Capture must be done within 28 days or it will be automatically voided.

Refund

Approved purchases and captures can be refunded within 180 days. This action can be done

through merchant account interface or programmatically through an API call. This is

required if a merchant cancels the order after transaction is settled, or a buyer is not

satisfied with delivered goods and/or services. Refunds can be done with a lesser amount

than an original authorization amount.

Void

Approved authorization must be voided within 28 days if merchant cancels the order. This

action can be done through merchant account interface or programmatically through an

API call.

5

API settings

API settings can be found under your merchant account. This information is necessary for

service to work properly. API settings values reflect a configuration at the merchant site:

• Authenticity token is unique merchant identifier, can be found under merchant

settings

• Key is a shared secret used to calculate digest value

• Success URL is an URL at the merchant site where a buyer is redirected after

approved authorization.

• Cancel URL is an URL at the merchant site where a buyer is redirected if cancel link

is clicked at payment form

• Redirect to success URL should be set to true if merchant parses the data carried in

redirect to success URL, ie. a listener will wait for this request and update order

status.

• Callback URL should be set under merchant profile if the merchant wants us to send

POST request message for each approved authorization

IMPORTANT Parametrize these values for API settings, we strongly advice a merchant to

have both, testing and production environments.

Return values

Redirect to success URL is made after transaction is approved and if redirect flag is set in

API settings. Data for this transaction is returned back to merchant site in this step.

Following variables are set in redirect GET request to success URL:

6

• acquirer

• amount

• approval_code

• authentication

• cc_type

• ch_full_name

• currency

• custom_params

• enrollment

• language

• masked_pan

• number_of_installments

• order_number

• response_code

• digest (returned digest)

This request may look like this:

https://ipgtest.monri.com/shop/success?acquirer=integration_acq&amount=100&approval_cod

e=629762&authentication=Y&cc_type=visa&ch_full_name=John+Doe¤cy=USD&custom_params
=%7Ba%3Ab%2C+c%3Ad%7D&enrollment=Y&language=en&masked_pan=434179-xxx-xxx-
0044&number_of_installments=&order_number=02beded6e6106a0&response_code=0000&digest=575

c64b2f5a0701997c8f9cfe4293706e88203cd911695ab747ce45830e4e3cbf71577c401e476988e4a4e1b0b

5f3ecbc56277394df07fa51fbe05869d1b067a

Returned digest is calculated as SHA512(key+success_url without digest). You must check

for this value at merchant application before updating status of transaction because

malicious user can forge this URL.

Returned digest is calculated using following formula:

digest = SHA512(key + succesURL(without DIGEST))

7

• key: 2345klj

• success URL(without Digest):

https://ipgtest.monri.com/shop/success?acquirer=integration_acq&amount=100&approval_cod

e=629762&authentication=Y&cc_type=visa&ch_full_name=John+Doe¤cy=USD&custom_params
=%7Ba%3Ab%2C+c%3Ad%7D&enrollment=Y&language=en&masked_pan=434179-xxx-xxx-
0044&number_of_installments=&order_number=02beded6e6106a0&response_code=0000

 digest

=

SHA512(2345kljhttps://ipgtest.monri.com/shop/success?acquirer=integration_acq&amount=10

0&approval_code=629762&authentication=Y&cc_type=visa&ch_full_name=John+Doe¤cy=USD

&custom_params=%7Ba%3Ab%2C+c%3Ad%7D&enrollment=Y&language=en&masked_pan=434179-xxx-xxx-

0044&number_of_installments=&order_number=02beded6e6106a0&response_code=0000)

digest=575C64B2F5A0701997C8F9CFE4293706E88203CD911695AB747CE45830E4E3CBF71577C401E47698

8E4A4E1B0B5F3ECBC56277394DF07FA51FBE05869D1B067A

IMPORTANT Success URL should expire after some sensible amount of time or protected

using session.

Callback

You can set callback URL under your merchant profile data if you want us to send a POST

request with all the transaction parameters for each approved transaction.

POST request is sent to your endpoint in JSON format.

We expect HTTP 200 OK status response code to terminate the job, otherwise we’ll send

the data periodically until we receive 200.

Here is a list of parameters included in callback request:

Callback Example:

{"id":186562,"acquirer":"integration_acq","order_number":"a6b62d07cc89aa0","amount":100

,"currency":"EUR","ch_full_name":"John

Doe","outgoing_amount":100,"outgoing_currency":"EUR","approval_code":"914783","response

_code":"0000","response_message":"approved","reference_number":"000002902038","systan":

"186561","eci":"05","xid":"fake authenticated xid +=","acsv":"fake authenticated cavv

+=","cc_type":"visa","status":"approved","created_at":"2019-09-

06T14:24:44.906+02:00","transaction_type":"purchase","enrollment":"Y","authentication":

"Y","pan_token":null,"masked_pan":"434179-xxx-xxx-0044","issuer":"zaba-

hr","number_of_installments":null,"custom_params":"{a:b, c:d}"}

8

Email notifications

Service can notify merchant and buyer upon successful purchase.

Merchant can use this message to track pending transactions and buyer can keep them as

reference. Both can be customized under your merchant account.

The following variables are interpolated into body of each email template:

• FULL_NAME

• ADDRESS

• CITY

• ZIP

• COUNTRY

• PHONE

• EMAIL

• AMOUNT

• ORDER_NUMBER

• ORDER_INFO

• CC_TYPE

• DATE

• SUCCESS_URL

• DOMAIN

9

Email template to notify the buyer may look like this:

Thank you for your business!

Credit Card Owner: ----------------

-- name: FULL_NAME address:

ADDRESS, CITY, ZIP, COUNTRY phone:

PHONE email: EMAIL

Order Details: -------------

----- order amount: AMOUNT

order number: ORDER_NUMBER

order description:

ORDER_INFO payment type:

CC_TYPE date: DATE order

url: SUCCESS_URL

Please come again!

Store adress: DOMAIN

NOTICE SUCCESS_URL has the same value as URL generated for redirect to success URL after

transaction is approved. It should expire after some sensible amount of time or protected

using session.

10

Variables - names, lengths and formats

Here are the definitions of variables which are submitted to WebPay form:

Buyer's profile

name length format additional info

ch_full_name 3-30 alphanumeric buyer's full name

ch_address 3-100 alphanumeric buyer's address

ch_city 3-30 alphanumeric buyer's city

ch_zip 3-9 alphanumeric buyer's zip

ch_country 3-30 alphanumeric buyer's country

ch_phone 3-30 alphanumeric buyer's phone

ch_email 3-100 alphanumeric buyer's email

Order details

name length format additional info

order_info 3-100 alphanumeric short description of

order being processed

order_number 1-40 alphanumeric unique identifier

amount 3-11 integer amount is in minor

units, ie. 10.24 USD

is send as 1024
currency predefined alpha possible values

are USD, EUR, BAM,

HRK, AUD, CHF,

RSD,
CAD,GBP,MDL,NOK,SEK

11

Processing data

Name lenght format additional info
Language predefined alpha used for form localization,

possible values are en, es, ba, me,

sr, slo or hr
transaction_type predefined alpha possible values are

authorize or purchase
authenticity_token 40 alphanumeric autogenerated value for merchant

account,
 can be found under merchant

settings
Digest 128 alphanumeric SHA512 hash generated from

concatenation of key,
order_number, amount and currency as

strings;
key can be found under merchant

settings
Moto predefined alpha possible value is true or false;

missing variable is equivalent

to false
tokenize_pan - boolean,string true to enable card tokenization

when the client enters card details
tokenize_pan_offered - boolean,string true to offer the client to tokenize

his PAN
whitelisted_pan_tokens predefined alphanumeric Token representing previously saved

customer card

Additional info:

tokenize_pan_offered – if true and merchant has secure vault active (tokenization enabled)

then save card for future payments will be shown to customer.

If customer decided to save the card and transaction is approved we’ll provide pan_token

which you can store on your side.

whitelisted_pan_token provide this value if customer decides to pay with previously saved

card(s). If this value is provided and valid (card not expired, token valid etc) then only cvv

input will be shown on the payment form. All other information (masked pan, expiry date

etc) will be prefilled. Multiple tokens can be sent (separated by comma). In that case, the

user will have an option which card to use.

tokenize_pan tokenize pan without prompting the user

12

Custom variables

Merchant can also send custom variables if needed. They will be passed back in redirect

after approved authorization. Just pack all the data you wish to send in JSON format and

submit that under custom_params variable.

Calculating digest

Digest is calculated using following formula:

 digest = SHA512(key + order_number + amount +currency)

With the following example data

• key: 2345klj

• order_number: abcdef

• amount: 54321

• currency: EUR

the digest formula gives a result as follows:

digest - SHA512.hexdigest(2345kljabcdef 54321EUR) =>

fc26113bfc9e7ea03b0db032c8da8fcded7f71fdc8b5aed47f469a01827c7fe4126b5ba2e80121a3472986

bb7342cbddb03f6e42fecf95272b231fab2daaf67c

13

Transaction management through API

WebPay API for capture/refund/void is a REST web service and you will need a HTTP client

library (like cURL - http://curl.haxx.se). All API calls are XML documents POST-ed over

HTTPS to our test server at https://ipgtest.monri.com

IMPORTANT Parametrize https://ipgtest.monri.com URL, in production mode the

subdomain will be different.

An example of such call using cURL from command line may look like this:

curl -H "Content-Type: application/xml" -H "Accept: application/xml" -k -i -d

request_xml https://ipgtest.monri.com/action

where request_xml is a XML document that contains data necessary for transaction

processing and https://ipgtest.monri.com/action is an URL that responds to certain API

call.

IMPORTANT Accept and Content-Type headers must be set to application/xml for all message

types.

Capture

After an authorization is successfully made, a capture call must be done to settle that

authorization.

Capture XML document is POST-ed to

https://ipgtest.monri.com/transactions/:order_number/capture.xml, where

 :order_number has a value from original authorization.

http://curl.haxx.se/
http://curl.haxx.se/
http://curl.haxx.se/
https://ipgtest.webteh.hr/
https://ipgtest.webteh.hr/
https://ipgtest.webteh.hr/action
https://ipgtest.webteh.hr/action

14

Document example for capture message may look like this:

<?xml version="1.0" encoding="UTF-8"?>

<transaction>

 <amount>54321</amount>

 <currency>EUR</currency>

 <digest>e64d4cd99367f0254ed5296d38fad6ce87d3acab</digest>

 <authenticity-token>7db11ea5d4a1af32421b564c79b946d1ead3daf0</authenticity-token>

 <order-number>11qqaazz</order-number>

</transaction>

Digest is calculated using following formula: digest =

SHA1(key + order_number + amount + currency)

With the following example data

• key: qwert123

• order_number: abcdef

• amount: 54321

• currency: EUR

the digest formula gives a result as follows: digest = SHA1("qwert123abcdef54321EUR") =

"16e943d2b84546ce4271de51679abc3bf1eb163b"

NOTICE Node names are dasherized version of corresponding variable names, ie.

underscores are replaced with dashes.

15

If all values pass validations at our side, transaction is send to the bank and response is

returned. That response may look like this:

• HTTP status code: 201 - Created

• HTTP headers: {:connection=>"close", :date=>"Tue, 25 Oct 2011 01:18:37 GMT",
:location=>"https://ipgtest.monri.com/transactions/845",
:content_type=>"application/xml; charset=utf-8", :cache_control=>"no-cache",

:x_ua_compatible=>"IE=Edge", :x_runtime=>"1.475305", :transfer_encoding=>"chunked"

• HTTP body:

<?xml version="1.0" encoding="UTF-8"?>

<transaction>

 <id type="integer">845</id>

 <acquirer>rogach bank</acquirer>

 <order-number>abcdef</order-number>

 <amount type="integer">54321</amount>

 <response-code>000</response-code>

 <approval-code>38860</approval-code>

 <response-message>authorization OK</response-message>

 <reference-number>898951263</reference-number>

 <systan>83704</systan>

 <cc-type>visa</cc-type>

 <status>approved</status>

 <transaction-type>authorize</transaction-type>

 <created-at type="datetime">2011-10-25T03:18:38+02:00</created-at>

</transaction>

New transaction is generated - 201 Created HTTP status code, and it's location is set

in appropriate HTTP header. A client then must parse a body from HTTP response and

extract all values from that XML document. Transaction is approved only and if only status

is set to approved. All other fields are standard data carried over payment networks. If issuer

declines a transaction, status flag is set to decline. In a case of an error, the flag will be set to

invalid.

16

IMPORTANT Do not rely on any output variable except status to

determine success of autorization.

NOTICE We highly recommend to our merchants to keep a whole response string and to

save all parsed values for easier troubleshooting during the integration phase and

production later on.

The quality of our support depends on availability of these information.

In case of invalid request, service will also return a response with

406 Not Acceptable HTTP status code and XML document in its body. Each offended variable

will be printed out along with brief explanation what went wrong. That response may look

like this:

<?xml version="1.0" encoding="UTF-8"?>

<errors>

 <error>Digest is invalid</error>

</errors>

Refund

Purchase and capture messages can be refunded within 180 days. Request XML for this

transaction_type is identical to capture example, but now the document is POST-ed to

https://ipgtest.monri.com/transactions/:order_number/refund.xml, where

:order_number has a value from original purchase or capture.

Response has identical structure as capture response and all response fields should be

treated in the same way.

17

Void

Void messages are POST-ed to

https://ipgtest.monri.com/transactions/:order_number/void.xml, where

:order_number has a value from original message (authorization, capture, purchase or refund).

They have identical structure as capture or refund messages.

Response has identical structure as capture response and all response fields should be

treated in the same way.

Transactions with installments

Form will automatically recognize cards which are eligible for payments in installments.

Installment range setup will be defined by the merchant-acquirer agreement.

3-D Secure

WebPay handles 3-D secure processing for you, this kind of integration doesn't require any

additional programming.

Demo client (Test client)

For easier integration we provided a demo client. Turn on the debug mode in API settings

under your merchant account to activate the client. A link to client is available upon

activation.

Append /success to that link and set as success URL if you want to see how those page could

look like.

Look & feel

Custom headers, footer and custom CSS support are currently disabled, due to introduction

of new form templates.

18

List of response codes

Here is the list of response codes and their description:

• 0000 - Transaction Approved

• 1001 - Card Expired

• 1002 - Card Suspicious

• 1003 - Card Suspended

• 1004 - Card Stolen

• 1005 - Card Lost

• 1011 - Card Not Found

• 1012 - Cardholder Not Found

• 1014 - Account Not Found

• 1015 - Invalid Request

• 1016 - Not Sufficient Funds

• 1017 - Previously Reversed

• 1018 - Previously Reversed

• 1019 - Further activity prevents reversal

• 1020 - Further activity prevents void

• 1021 - Original transaction has been voided

• 1022 - Preauthorization is not allowed for this card

• 1023 - Only full 3D authentication is allowed for this card

• 1024 - Installments are not allowed for this card

• 1025 - Transaction with installments can not be send as preauthorization

• 1026 - Installments are not allowed for non ZABA cards

• 1050 - Transaction declined

• 1802 - Missing fields

• 1803 - Extra fields exist

• 1804 - Invalid card number

• 1806 - Card not active

• 1808 - Card not configured

19

• 1810 - Invalid amount

• 1811 - System Error, Database

• 1812 - System Error, Transaction

• 1813 - Cardholder not active

• 1814 - Cardholder not configured

• 1815 - Cardholder expired

• 1816 - Original not found

• 1817 - Usage Limit Reached

• 1818 - Configuration error

• 1819 - Invalid terminal

• 1820 - Inactive terminal

• 1821 - Invalid merchant

• 1822 - Duplicate entity

• 1823 - Invalid Acquirer

• 2000 - Internal error - host down

• 2001 - Internal error - host timeout

• 2002 - Internal error - invalid message

• 2003 - Internal error - message format error

• 2013 - 3D Secure error - invalid request

• 3000 - Time expired

• 3100 - Function not supported

• 3200 - Timeout

• 3201 - Authorization host not active

• 3202 - System not ready

• 4001 - 3D Secure error - ECI 7

• 4002 - 3D Secure error - not 3D Secure, store policy

• 4003 - 3D secure error - not authenticated

• 5018 - RISK: Minimum amount per transaction

• 5019 - RISK: Maximum amount per transaction

• 5001 - RISK: Number of repeats per PAN

• 5020 - RISK: Number of approved transactions per PAN

• 5003 - RISK: Number of repeats per BIN

• 5016 - RISK: Total sum on amount

20

• 5021 - RISK: Sum on amount of approved transactions per PAN

• 5022 - RISK: Sum on amount of approved transactions per BIN

• 5005 - RISK: Percentage of declined transactions

• 5009 - RISK: Number of chargebacks

• 5010 - RISK: Sum on amount of chargebacks

• 5006 - RISK: Number of refunded transactions

• 5007 - RISK: Percentage increment of sum on amount of refunded transactions

• 5023 - RISK: Number of approved transactions per PAN and MCC on amount

• 5011 - RISK: Number of retrieval requests

• 5012 - RISK: Sum on amount of retrieval requests

• 5013 - RISK: Average amount per transaction

• 5014 - RISK: Percentage increment of average amount per transaction

• 5015 - RISK: Percentage increment of number of transactions

• 5017 - RISK: Percentage increment of total sum on amount

• 5050 - RISK: Number of repeats per IP

• 5051 - RISK: Number of repeats per cardholder name

• 5052 - RISK: Number of repeats per cardholder e-mail

• 6000 - Internal error - systan mismatch

